Structural and biochemical characterization of CRN-5 and Rrp46: An exosome component participating in apoptotic DNA degradation

Che-Chuan Yang, Yi-Ting Wang, Yu-Yuan Hsiao, et al.

RNA published online July 21, 2010
Access the most recent version at doi:10.1261/rna.2180810

Supplemental Material
http://rnajournal.cshlp.org/content/suppl/2010/06/25/rna.2180810.DC1.html

Published online July 21, 2010 in advance of the print journal.

Open Access
Freely available online through the RNA Open Access option.

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.

To subscribe to RNA go to: http://rnajournal.cshlp.org/subscriptions

© 2010 RNA Society
Structural and biochemical characterization of CRN-5 and Rrp46: An exosome component participating in apoptotic DNA degradation

CHE-CHUAN YANG,1,2 YI-TING WANG,2,3,4 YU-YUAN HSIAO,2,4 LYUDMILA G. DOUDEVA,2 PAN-HSIEN KUO,2,4 SIH YAO CHOW,2 and HANNA S. YUAN1,2,3

1Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, 10617 Taiwan, Republic of China
2Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China
3Taiwan International Graduate Program, Institute of Chemical Biology and Molecular Biophysics, Academia Sinica, Taipei 11529, Taiwan, Republic of China
4Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China

ABSTRACT

Rrp46 was first identified as a protein component of the eukaryotic exosome, a protein complex involved in 3'–5' processing of RNA during RNA turnover and surveillance. The Rrp46 homolog, CRN-5, was subsequently characterized as a cell death-related nuclease, participating in DNA fragmentation during apoptosis in Caenorhabditis elegans. Here we report the crystal structures of CRN-5 and rice Rrp46 (oRrp46) at a resolution of 3.9 Å and 2.0 Å, respectively. We found that recombinant human Rrp46 (hRrp46), oRrp46, and CRN-5 are homodimers, and that endogenous hRrp46 and oRrp46 also form homodimers in a cellular environment, in addition to their association with a protein complex. Dimeric oRrp46 had both phosphorolytic RNase and hydrolytic DNase activities, whereas hRrp46 and CRN-5 bound to DNA without detectable nuclease activity. Site-directed mutagenesis in oRrp46 abolished either its DNase (E160Q) or RNase (K75E/Q76E) activities, confirming the critical importance of these residues in catalysis or substrate binding. Moreover, CRN-5 directly interacted with the apoptotic nuclease CRN-4 and enhanced the DNase activity of CRN-4, suggesting that CRN-5 cooperates with CRN-4 in apoptotic DNA degradation. Taken together all these results strongly suggest that Rrp46 forms a homodimer separately from exosome complexes and, depending on species, is either a structural or catalytic component of the machinery that cleaves DNA during apoptosis.

Keywords: RNA turnover; DNA degradation; crystal structure; RNase PH; RNase; DNase; apoptotic nuclease

INTRODUCTION

A conserved family of RNase phosphorolysis (PH) proteins plays a key role in the correct processing, quality control, and turnover of cellular RNA molecules and is critical to the precise expression of genetic information and cell survival (Symmons et al. 2002). Most of the RNase PH family proteins have 3'- to 5' exoribonuclease activity, capable of removing the 3'-end nucleotide by adding a phosphate, rather than a water molecule, to the cleaved phosphodiester bond, and are therefore involved in phosphorolytic RNA processing and degradation. Examples include the prokaryotic PNPase (Littauer and Grunberg-Manago 1999) and RNase PH (Deutscher et al. 1988), and the archaeal exosome (Evguenieva-Hackenberg et al. 2003).

Rrp46 is an RNase PH family protein and was first identified as a component of the eukaryotic exosome, a multiprotein complex involved in RNA processing, surveillance, and turnover of various pre-mRNA, mRNA, snRNA, snoRNA, rRNA, and tRNA species in the cytoplasm and the nucleus (Anderson and Parker 1998; de la Cruz et al. 1998; Allmang et al. 1999a; van Hoof et al. 2000; Hilleren et al. 2001; Suzuki et al. 2001; Torchet et al. 2002; Mitchell and Tollervey 2003; Kadaba et al. 2004; Raijmakers et al. 2004). The yeast exosome core consists of six RNase PH family proteins (Rrp41, Rrp42, Rrp43, Rrp45, Rrp46, and Mtr3), three KH-domain-containing proteins (Rrp4, Rrp40, and Cad4), and additional hydrolytic exoribonucleases (Rrp44/Dis3 and Rrp6) (Mitchell et al. 1997; Allmang et al. 1999b). Related exosomes have been described in other species, such as among the hyperthermophilic archaea,
The Caenorhabditis elegans Rrp46 homolog, CRN-5, was further identified as a cell death-related nuclease involved in DNA fragmentation during apoptosis (Parrish and Xue 2003). CRN-5 shares significant sequence identity (31%) with human hRrp46 (see the sequence alignment in Fig. 1). RNAi knockdown of CRN-5 resulted in an increase of TUNEL-reactive cells and the delayed appearance of embryonic cell corpses during development in C. elegans, indicating the involvement of CRN-5 in apoptotic DNA degradation (Parrish and Xue 2003). Moreover, CRN-5 can also form another complex, the degradosome, with CPS-6, WHA-1, CYP-13, and a number of CRN nucleases, including CRN-4 and CRN-1 (Parrish and Xue 2003). This result implies that CRN-5 may not be associated with the exosome when it is involved in DNA fragmentation during apoptosis.

To understand how Rrp46/CRN-5 functions in apoptotic DNA fragmentation, we characterized the biochemical properties of C. elegans CRN-5 and compared them to those of human hRrp46 and rice oRrp46. We also determined the crystal structures of CRN-5 and oRrp46. Our results show that both recombinant and endogenous Rrp46/CRN-5 are homodimers. Rice oRrp46 has phosphorolytic RNase activity and hydrolytic DNase activity. Mutational studies of oRrp46 verified the residues involved in catalysis and substrate binding. On the other hand, the recombinant hRrp46 and CRN-5 have no detectable RNase and DNase activity. Crystal structural comparison of the active oRrp46 versus the inactive hRrp46 further suggests the structural basis for the enzyme activity, where only the active oRrp46 has basic residues appropriate for RNA binding. Moreover, CRN-5 binds to DNA and to the apoptotic nuclease CRN-4 and thereby promotes the DNase activity of the apoptotic nuclease CRN-4 (Hisao et al. 2009), suggesting that CRN-5 is involved in DNA degradation. Our findings therefore suggest that Rrp46 is a dual-function protein: when associated with the exosome, it is involved in RNA processing and turnover in normal cells, and when it forms a homodimer it is involved in DNA degradation during apoptosis. This finding therefore provides a new direction for the study of the role of hRrp46 in cancer and autoimmune diseases.

RESULTS

Rrp46 forms a stable homodimer

The cDNA encoding C. elegans CRN-5, rice (Oryza sativa) oRrp46, and human hRrp46 were PCR-amplified and cloned into His-tagged fusion constructs. Recombinant Rrp46/CRN-5 proteins were overexpressed in Escherichia coli and purified by chromatographic methods. The His-tagged oRrp46 and hRrp46 were purified to a homogeneity of >98%, whereas CRN-5 was less homogeneous with a partial population of cross-linked dimers as shown by
SDS-PAGE in a reduced condition (see Fig. 2A). Mass spectrometry verified the correct molecular weight of each protein (data not shown) (theoretical molecular weights for the recombinant proteins: 26,974 Da for oRrp46; 24,988 Da for CRN-5; and 27,412 Da for hRrp46). The three proteins share high sequence identity: 35% between hRrp46 and oRrp46, 31% between hRrp46 and CRN-5, and 28% between oRrp46 and CRN-5 (see Fig. 1).

The three purified proteins, CRN-5, oRrp46, and hRrp46, eluted with a size between 44 kDa and 75 kDa in size-exclusion chromatography under reduced conditions (1 mM β-mercaptoethanol) (Fig. 2B). The molecular weights of the three proteins estimated by dynamic light scattering (DLS) and analytical ultracentrifugation (AUC) under reduced conditions were also in the range of 42–59 kDa (Fig. 2C,D), suggesting that the recombinant proteins were homodimers with molecular weights of ~50 kDa. To further verify that Rrp46 forms homodimers in a cellular environment, endogenous Rrp46 in the cell extracts of human 293T cells and rice callus were blotted using antibodies against hRrp46 and oRrp46 after gel filtration fractionation (Fig. 2E). Two populations of hRrp46 were observed at different elution volumes with or without the addition of the reducing agent (1 mM β-mercaptoethanol): the first peak eluted at 45–60 mL, indicating a high-molecular-weight complex, and the second peak appeared at 80–85 mL, indicating a mixture of a dimer and a monomer. The cell extract of rice callus gave similar results that oRrp46 migrated as a large-size complex and a small-size dimer. As a control, the 293T cell extract eluted from gel filtration fractionation was also blotted with antibodies against hRrp42, one of the six RNase PH family proteins in the exosome core. The Western blot displayed in Figure 2E shows that hRrp42 only eluted in a complex with a molecular weight >158 kDa. The complex identified by anti-hRrp42 overlapped with the complex indicated by probing with anti-hRrp46, suggesting that both proteins were likely associated with the same complex, the exosome. This result is consistent with the previous result in the reconstitution of the human exosome in which a monodisperse peak with a molecular weight of ~400 kDa and a smaller size peak were observed in the gel filtration under low-salt conditions (Liu et al. 2006). In summary, these results suggest that the exosome component protein hRrp42 is associated with a protein complex, but it does not form a monomer or a dimer in cells. On the other hand, the endogenous Rrp46 is associated with a protein complex and it also forms a separate dimer in a cellular environment.
Rice oRrp46 has DNase and RNase activity

The three Rrp46 proteins were incubated separately with DNA for gel retardation and DNA cleavage assays to determine their DNA-binding and cleavage activity (Fig. 3). The mobility of a 32P-labeled 20-base-pair (bp) DNA was retarded by Rrp46/CRN-5, showing that the three recombinant proteins all bound to the double-stranded DNA (Fig. 3A). oRrp46 also degraded a linear 309-bp DNA, while hRrp46 and CRN-5 had no detectable DNase activity with a protein concentration of 1 mM in the time-course experiments (Fig. 3B), suggesting that the recombinant proteins hRrp46 and CRN-5 (and a negative control of RNase T) had either no or very low DNase activities in the in vitro condition. Divalent metal ions, preferably Ca$^{2+}$ over Mg$^{2+}$, but not phosphate ions, were required for the DNase activity of oRrp46 (Fig. 3C), suggesting that oRrp46 was a hydrolase rather than a phosphorylase in the digestion of dsDNA. Moreover, oRrp46 cleaved the plasmid DNA, in contrast to an exonuclease TREX2, suggesting that oRrp46 has endonucleolytic DNase activity (Fig. 3D). Previously, the bacterial RNase PH has been shown to bind DNA (Jensen et al. 1992), and, for the first of time, we show here that an RNase PH family protein oRrp46 has metal-dependent hydrolytic DNase activity.

To determine the RNA-binding and cleavage activity, oRrp46, hRrp46, and CRN-5 were incubated with in vitro-transcribed 2.3-kb ssRNA for gel retardation and RNA cleavage assays. Figure 4, A and B, shows that oRrp46 had both RNA-binding and RNase activity against ssRNA. The retarded smears resulting from oRrp46 binding to the 2.3-kb RNA further suggest that multiple oRrp46 in high concentrations were bound to the large-size ssRNA, likely without sequence specificity, to induce the observable shifts. In contrast, CRN-5 and hRrp46 could not bind to or digest ssRNA.

To further confirm that oRrp46 is a phosphorylase, RNase assays were performed in the presence or absence of phosphate ions. oRrp46 digested a 20-nucleotide (nt) ssRNA only in the presence of both Mg$^{2+}$ ions and oRrp46 has endonucleolytic DNase activity (Fig. 3D). Previously, the bacterial RNase PH has been shown to bind DNA (Jensen et al. 1992), and, for the first of time, we show here that an RNase PH family protein oRrp46 has metal-dependent hydrolytic DNase activity.

To determine the RNA-binding and cleavage activity, oRrp46, hRrp46, and CRN-5 were incubated with in vitro-transcribed 2.3-kb ssRNA for gel retardation and RNA cleavage assays. Figure 4, A and B, shows that oRrp46 had both RNA-binding and RNase activity against ssRNA. The retarded smears resulting from oRrp46 binding to the 2.3-kb RNA further suggest that multiple oRrp46 in high concentrations were bound to the large-size ssRNA, likely without sequence specificity, to induce the observable shifts. In contrast, CRN-5 and hRrp46 could not bind to or digest ssRNA.

To further confirm that oRrp46 is a phosphorylase, RNase assays were performed in the presence or absence of phosphate ions. oRrp46 digested a 20-nucleotide (nt) ssRNA only in the presence of both Mg$^{2+}$ ions and
of various concentration (0%–20%) of PEG3350. Lane CoRrp46 (0.2 M circular; l linear; s linear) was incubated with the linear dsDNA (30 nM) in the DNase reaction buffer (20 mM HEPES [pH 7.0], 100 mM NaCl, 1 mM CaCl$_2$ and 1 mM DTT) at 37°C for the indicated periods, followed by agarose gel electrophoresis. A control reaction without any oRrp46 added is shown in lane C. RNA-specific RNase T was used as a negative control. (C) Rice oRrp46 is a metal ion-dependant hydrolytic DNase. oRrp46 (1 M) was incubated with linear dsDNA (30 nM) at 37°C for 20 min in the presence or absence of MgCl$_2$, CaCl$_2$, and NaH$_2$PO$_4$. All the reaction buffers contained 20 mM HEPES (pH 7.0), 100 mM NaCl, and 1 mM DTT with addition of 2 mM MgCl$_2$ in lane M$_g$, 1 mM CaCl$_2$ in lane M$_c$, 5 mM NaH$_2$PO$_4$ in lane M$_p$, and combinations of each of two factors in the rest of the lanes. A control reaction without metal and phosphate ion added is shown in lane Buffer. (D) Rice oRrp46 cleaves plasmid DNA. oRrp46 (0.2 M) was incubated with 100 ng plasmid DNA at 37°C for up to 60 min in the DNase reaction buffer. TREX2, an exonuclease hydrolyase, was used as a negative control: o, open circular; l, linear; s, super coiled. (E) Rice oRrp46 lost its DNase activity in the presence of PEG3350, oRrp46 (0.2 M) was incubated with 100 ng plasmid DNA at 37°C for 30 min in the presence of various concentration (0%–20%) of PEG3350. Lane C is for loading control: o, open circular; l, linear; s, super coiled.

Overall crystal structures of oRrp46 and CRN-5

To elucidate the molecular basis of oRrp46 and CRN-5 in domain assembly and nucleic acid cleavage activity, we crystallized the two proteins for three-dimensional structural determination. oRrp46 crystallized in the trigonal space group P3$_1$ with three molecules per asymmetric unit, diffracting X-rays to a resolution of 2.0 Å, whereas CRN-5 crystallized in the monoclinic space group P2$_1$ with two molecules per asymmetric unit, diffracting X-rays to a resolution of only 3.9 Å. Both structures were solved by molecular replacement using the crystal structure of human Rrp46 (PDB accession code 2NN6, chain D) as the search model. The statistics for X-ray diffraction and structural refinement are listed in Table 1.

oRrp46 was a dimer in solution; however, the three molecules in the asymmetric unit shared little contact area with buried interfaces <300 Å2 for each subunit. To confirm the oligomeric state in the crystals, we found that oRrp46 was a monomer in the crystallization condition with a buffer solution containing 5% PEG3350 using gel filtration assays (see the elution profile marked with oRrp46/PEG in Fig. 2B). The human hRrp46 in the reconstituted six-subunit exosome complex also migrated as a monomer in the gel filtration analysis under low-salt conditions, suggesting that hRrp46 dimers may be dissociated into monomers at a low-ionic-strength condition (Liu et al. 2006). Moreover, we found that oRrp46 lost its DNase activity in the presence of 20% PEG3350, indicating that the dimeric conformation is important for the DNase activity (see Fig. 3E). Therefore oRrp46 was crystallized in a monomeric form, dissociated by PEG3350. The final model had an R-factor/R-free of 0.169/0.235 for 54,728/2776 reflections at a resolution of 2.0 Å.

The internal 32P-labeled RNA substrate was incubated with oRrp46 for 60 min with or without RNaseIN) on ice for 30 min. The up-shifted RNA was indicated by an arrow. (B) Gel retardation assays show that rice oRrp46 cleaves ssRNA into ADP but not AMP (Fig. 4D), further confirming that oRrp46 was a phosphorolytic RNase. Altogether, these results suggest that rice oRrp46 is not only a hydrolytic DNase but also a phosphorolytic RNase, whereas the human hRrp46 and the worm homolog CRN-5 are only capable of binding to DNA but have neither DNase nor RNase activity.

![FIGURE 3.](image)

![FIGURE 4.](image)
Yang et al.

The monomeric oRrp46 adopts a β-α-β-α folding and shares a similar structure to other RNase PH exonucleases (Fig. 5A). Superposition of oRrp46 onto hRrp46 by the secondary-structure-based method gave an RMSD of 1.29 Å over 187 Ca atoms. Superposition of oRrp46 onto archaeal Rrp41–Rrp42 dimer (PDB accession code: 2JEA) gave a RMSD of 3.02 Å over 279 Ca atoms. These results suggest that oRrp46 shares a similar overall structure to other RNase PH family proteins with or without RNase activity.

To understand how Rrp46 monomers associate into a dimer, CRN-5 was crystallized in the conditions favoring homodimer formation. The resolution of the CRN-5 dimer was determined to be 2.0 Å (Fig. 5A). Superposition of the CRN-5 dimer over hRrp46-hRrp43 gave a RMSD of 3.05 Å over 273 Ca atoms, whereas superposition of the CRN-5 dimer onto the archaeal Rrp41–Rrp42 dimer (PDB accession code: 2JEA) gave a RMSD of 3.02 Å over 279 Ca atoms. These results suggest that the dimeric assembly mode of CRN-5 is similar to the one that exists between hRrp43 and hRrp46 in the human exosome, and to the one between Rrp41 and Rrp42 in archaeal exosomes.

Residues involved in substrate binding and cleavage in oRrp46

oRrp46 has both DNase and RNase activity, so the next question that arose was where the substrate-binding and active sites are in the dimeric oRrp46. The active residues of the phosphorolytic RNase PH domain have been well studied in archaeal exosomes (Buttner et al. 2005; Lorentzen and Conti 2005; Navarro et al. 2008). One acidic residue (D182 in Sulfolobus solfataricus, D180 in Pyrococcus abyssi) is critical for the RNase activity of archaeal Rrp41, and this acidic residue is conserved in both active and inactive RNase PH proteins, including D486 of PNPase, E174 of hRrp46, E219 of hRrp42, D180 of PaRrp41, and E160 of oRrp46. The recent crystal structure analysis of the E. coli PNPase bound to manganese further suggests that this conserved acidic residue (D486) is bound to the metal ion, responsible for stabilizing the transition state (Nurmohamed et al. 2009). Superposition of the structure of oRrp46 with all of these RNase PH enzymes showed that E160 in oRrp46 fitted well with the conserved acidic residues (marked by an arrow in Fig. 5A). We therefore mutated E160 to determine whether this residue is a catalytic residue in oRrp46. As a result, the purified oRrp46 E160Q lost most of its DNase activity in digesting a linear 309-bp dsDNA (see Fig. 6A); however, the mutant only lost partial activity in digesting a 20-mer ssRNA (Fig. 6B). These results suggest that E160 plays a more important role in catalyzing the phosphorolytic cleavage of DNA, and it plays a less critical role in the phosphorolytic cleavage of RNA.

To determine the residues involved in nucleic acid binding, we compared the crystal structures of oRrp46 with those of active archaeal Rrp41 (PDB accession code: 2P01, chain B) and human hRrp46 (PDB accession code: 2NN6, chain D). A 5-nt RNA substrate bound in the

<table>
<thead>
<tr>
<th>TABLE 1. X-ray data collection and refinement statistics for rice oRrp46 and C. elegans CRN-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
</tr>
<tr>
<td>Data collection</td>
</tr>
<tr>
<td>Space group</td>
</tr>
<tr>
<td>Cell dimensions (Å/degree)</td>
</tr>
<tr>
<td> </td>
</tr>
<tr>
<td> </td>
</tr>
<tr>
<td>Wavelength (Å)</td>
</tr>
<tr>
<td>Resolution (Å)</td>
</tr>
<tr>
<td> </td>
</tr>
<tr>
<td>Reflections (working/test)</td>
</tr>
<tr>
<td>Unique reflections</td>
</tr>
<tr>
<td>Completeness (%)</td>
</tr>
<tr>
<td>Completeness (%)<sup>b</sup></td>
</tr>
<tr>
<td><I>d</I><I><s</I> <I><s</I></td>
</tr>
<tr>
<td><I>I</I><I><s</I> <I><s</I></td>
</tr>
<tr>
<td>Refinement</td>
</tr>
<tr>
<td>Resolution range (Å)</td>
</tr>
<tr>
<td>R-factor/R-free (%)</td>
</tr>
<tr>
<td> </td>
</tr>
<tr>
<td>Number of atoms (protein/water)</td>
</tr>
<tr>
<td>Average B-factor (Å<sup>2</sup>)</td>
</tr>
<tr>
<td>RMS deviations</td>
</tr>
<tr>
<td>(bond length [Å]/bond angle [degree])</td>
</tr>
<tr>
<td>Ramachandran plot (%)</td>
</tr>
<tr>
<td>Most favored/additional allowed/generously allowed/disallowed</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

^aHighest resolution shell is shown in parentheses.
^bR_{sym} =<I><s</I><I><s</I>hkl | <i><s</i>hkl^l> | <I><s</i>hkl_l</I> | <I><s</i>hkl_L</I>.
structure of the P. abyssi Rrp41–RNA complex reveals two important basic residues, R96 and R97, involved in RNA binding (circled in Fig. 5C; Navarro et al. 2008). These two basic residues are missing in the inactive hRrp46 (Fig. 5C, gray, V89 and A90) and hRrp42 (Fig. 5C, yellow, D100 and L101), suggesting that the loss of RNase activity is likely a result of the loss of RNA-binding activity. In oRrp46 a polar (Q76) and a basic (K75) residue are located at the corresponding RNA-binding site and may play a similarly important role in RNA binding. To verify our hypothesis, we constructed a double mutant of oRrp46, K75E/Q76E, to test its RNA-binding and cleavage activity. This oRrp46 mutant (K75E/Q76E) almost completely lost its DNA- and RNA-binding activity in gel retardation assays (Fig. 6C,D). The DNase and RNase activity were also abolished, compared with the wild-type oRrp46 (Fig. 6A,B). Therefore, K75 and Q76 of oRrp46 are indeed involved in RNA and DNA binding. Impairment of the substrate-binding ability of oRrp46 results in the loss of its nuclease activity.

CRN-5 interacts with CRN-4 and enhances the DNase activity of CRN-4

CRN-5 was identified as a cell death-related nuclease involved in DNA fragmentation during apoptosis in C. elegans (Parrish and Xue 2003). However, here we show that CRN-5 only binds to DNA without detectable DNase activity. It was therefore puzzling how CRN-5 is involved in DNA fragmentation. It has been shown previously that CRN-5 is a component of a protein complex, the degradeosome, interacting with CPS-6, CRN-4, CRN-1, and CYP-13 in GST pull-down assays (Parrish and Xue 2003). To further clarify the role of CRN-5 in DNA degradation, we tested its interaction with CRN-4, a fully characterized DEDD family apoptotic nuclease with both DNase and RNase activity (Hsiao et al. 2009). We confirmed that His-tagged dimeric CRN-5 interacted directly with dimeric CRN-4 by His-tag pull-down assays (see Fig. 7A; Parrish and Xue 2003). Moreover, the DNase activity of CRN-4 was enhanced by the presence of CRN-5 compared with that of CRN-4 alone (Fig. 7B, cf. 6.5% DNA remaining and 13% DNA remaining with CRN-4 alone). These results suggest that CRN-5 promotes CRN-4’s DNase activity.

![FIGURE 5. Crystal structures of the monomeric oRrp46 and dimeric CRN-5. (A) The crystal structure of the monomeric oRrp46. The catalytic residue, E160, and substrate-binding residues, K75 and Q76, in the active site are shown as a stick model. (B) Superposition of the active sites of several RNase PH proteins shows that a conserved acidic residue is located at the same position: E160 in oRrp46 (this study), E148 in CRN-5 (this study), D180 in PaRrp42 (2PO1, chain A), E174 in hRrp46 (2NN6, chain D), and E219 in hRrp42 (2NN6, chain E). The bound RNA nucleotide cocrystallized with PaRrp41 is displayed as a ball-and-stick model. (C) The crystal structure of the dimeric CRN-5. Individual monomers are shown in blue and cyan, respectively. Comparison of RNA-binding residues in RNase PH proteins. The two basic residues, R96 and R97, bind to the phosphate groups of RNA (displayed as a ball-and-stick model) in PaRrp41 (green, 2PO1, chain A). Corresponding residues in oRrp46 (Q76 and K75) are more suitable for RNA binding compared with those in the inactive enzymes of hRrp46 (V89 and A90) and hRrp42 (D100 and L101). The strong RNA-binding residues are circled in solid lines and the weak RNA-binding residues are circled in dashed lines.](https://www.rnajournal.org)

![FIGURE 6. In vitro nuclease activity assays of wild-type and mutated oRrp46. (A) DNA (309 bp, 30 nM) cleavage assays by the wild type, active-site mutant (E160Q), and nucleotide-binding-site mutant (K75E/Q76E) of oRrp46 (1 μM). All the reaction conditions were identical to those in Figures 3 and 4. (B) Time-course RNA cleavage assays by the wild type, E160Q, and K75E/Q76E mutant of oRrp46. The RNA markers that varied from 1 to 20 nucleotide(s) are labeled on the left of the panel. (C) DNA gel shift assays of the wild type and K75E/Q76E mutant of oRrp46. The protein–DNA complex is indicated with an arrow. (D) RNA gel shift assays of the wild type and K75E/Q76E mutant of oRrp46. The up-shifted RNA is indicated by arrows. The bracket at the right indicates the up-shifted RNA.](https://www.rnajournal.org)
activity and these two proteins act cooperatively in DNA degradation.

DISCUSSION

RNA-binding residues are critical for the enzyme activity of RNase PH proteins

RNase PH family proteins are a group of fascinating enzymes, sharing similar sequences and structures, but they have evolved differently with either retained or lost RNase activity (Symmons et al. 2002). They can be grouped into active RNases, which include RNase PH, the second PH domain of PNPase, archaeal Rrp41, plant Rrp41 and oRrp46, and inactive RNases, including the first PH domain of PNPase, archaeal Rrp42, and human Rrp46. The structural basis of an active versus an inactive RNase PH enzyme in RNA cleavage is still under discussion. Previous studies have focused on the comparison of the conserved general-acid residue and the varied phosphate-binding residues among the RNase PH family proteins (Buttner et al. 2005; Lorentzen and Conti 2005; Navarro et al. 2008).

Here we identify a quite significant feature in RNase PH family proteins that differentiates an active enzyme from an inactive one. We found that the active oRrp46 has a positively charged region located at the RNA entry site (due to "strong RNA-binding residues," shown in Fig. 5C), which may facilitate RNA binding (marked by a red circle in Fig. 8). A similar positively charged RNA-binding region can be observed on the active enzymes of archaeal Rrp41 (PaRrp41) and the second domain of PNPase (PNPase PH II). On the contrary, the surface of the corresponding regions on the inactive enzymes, including archaeal Rrp42 (PaRrp42), the first domain of PNPase (PNPase_RNase PH I) and human Rrp46, are neutral or even acidic, and thus not suitable for RNA binding (marked by a green circle in Fig. 8). The loss of nucleic acid-binding ability in the oRrp46 K75E/Q76E mutant resulted in the loss of its RNA cleavage activity, further supporting this suggestion that the ability to bind substrates is closely related to the nuclease activity of an RNase PH enzyme. This observation is true for all the RNase PH proteins with known structures, except for the inactive human Rrp41, which has suitable residues for the role of general acid and phosphate binding, and also appropriate residues for RNA binding (Lorentzen and Conti 2005). Therefore, we conclude that possessing the correct RNA-binding residues at the entry site of an RNase PH protein is a necessary, but not sufficient, condition for efficient RNase activity.

Dual roles of Rrp46 in RNA turnover and DNA degradation

Our biochemical and structural analyses demonstrate that the eukaryotic exosomal component proteins, including hRrp46 and oRrp46, form a stable homodimer in vivo and in vitro. The homodimeric rice oRrp46 shows, for the first time, both hydrolytic DNase and phosphorylolytic RNase activity. On the other hand, the nematode Rrp46 (CRN-5) and human hRrp46 had no detectable DNase and RNase activities. It has been shown that Rrp41 from Arabidopsis

FIGURE 7. CRN-5 interacts with CRN-4 and enhances CRN-4’s DNase activity. (A) His-tag pull-down assays of CRN-4 by His-tagged CRN-5. The His-tagged CRN-5 was incubated with or without CRN-4, and then the complex was pulled down in a Ni-NTA spin column. The eluted solution was analyzed by Western blotting using anti-CRN-4 (α-CRN-4) and anti-6xHis (α-6xHis) antibodies. (B) Assays of CRN-4 DNase activity in the presence or absence of CRN-5. A linear 309-bp double-stranded DNA (30 nM) was incubated with CRN-4 (1 μM), CRN-5 (2 μM), or both together, and the DNA digests were analyzed and quantified by gel electrophoresis. CRN-4 cleaved linear dsDNA more efficiently in the presence of inactive CRN-5 (6.5% vs. 13% DNA remained).

FIGURE 8. Electrostatic surface potential and substrate-binding sites of active and inactive RNase PH proteins. The active RNase PH proteins all have positive surfaces at the RNA-binding site (circled), including PaRrp41 (2PO1, chain A), RNase PH II domain of PNPase (3CDI), and oRrp46 (this study). The RNA bound in PaRrp41 is displayed as a stick model. On the contrary, the inactive RNase PH proteins have neutral or acidic surfaces at the RNA-binding sites (circled), including PaRrp42 (2PO1, chain B), RNase PH I domain of PNPase (3CDI), and hRrp46. The color scale of the surface potential was set from ~75 kT/e (red) to 75 kT/e (blue), as calculated by Pymol (DeLano Scientific LLC, http://www.pymol.org).
Rrp46/CRN-5 in DNA degradation

C. elegans displays a processive phosphorolytic exoribonuclease activity (Chekanova et al. 2000). Our results show, without forming an exosome complex, that homodimeric oRrp46 alone is also an active phosphorolytic RNase. The RNase activity of oRrp46 can be abolished by substrate-binding site (K75 and Q76) mutation, excluding the possibility of contamination by *E. coli* enzymes during protein preparation. This result thus shows that eukaryotic exosome core complexes have evolved distinctive ways of degrading RNA, as some of the plant exosome RNase PH component proteins do have RNase activities, compared with the yeast and human exosomal proteins which have no detectable activity.

Rrp46/CRN-5 is also a candidate for apoptotic DNA degradation in *C. elegans* (Parrish and Xue 2003). Here we show that rice oRrp46 indeed has DNase activity, and *C. elegans* CRN-5 enhances the DNase activity of CRN-4. These results provide new lines of evidence to support the involvement of Rrp46 in apoptotic nucleosomal degradation. Although CRN-5 only increases the DNase activity of CRN-4 slightly in vitro, it is likely that various apoptotic nucleases in the degradeosome complex, including CPS-6, CRN-1, CRN-3, CRN-4, CRN-5, and CYP-13, work together and increase the efficiency of DNA degradation with a synergistic effect in cellular environments. Another exosome component protein, CRN-3, a homolog of human PM-Scl100 and yeast Rrp6, is also implicated in the degradeosome and is suggested to be involved in DNA degradation during apoptosis (Parrish and Xue 2003). Therefore, CRN-5 is not the only exosome component protein that is identified as a player in DNA fragmentation during apoptosis.

Interestingly, autoantibodies against both PM-Scl100 and hRrp46 are often identified in the patients with autoimmune diseases (Reichlin et al. 1984; Bluthner and Bautz 1992; Ge et al. 1992; Brouwer et al. 2002). Loss or reduction of DNase activity of several nucleases has been shown to link to a number of autoimmune diseases, such as DNase I associated with systemic lupus erythmatosus (Napierei et al. 2000; Yasutomo et al. 2001), and DNase II associated with rheumatoid arthritis (Kawane et al. 2006). It is suggested that the DNA escaping from degradation during program cell death elicits autoimmune responses; however, the underlying mechanisms and signaling events that regulate innate immune responses to extracellular and cytosolic undigested DNA are still elusive (Green et al. 2009; Okabe et al. 2009). The finding of autoantibodies of hRrp46 and PM-Scl100 in autoimmune diseases hints at a link between the two exosome component proteins and DNA degradation.

A search in the cancer database further shows that hRrp46 may play a function other than RNA turnover and processing. In summary, our results strongly support the notion that Rrp46/CRN-5 forms a homodimer, participating in DNA degradation in cell death. Rrp46 likely switches its role and plays dual functions between life and death. Based on these biochemical, cellular, structural, and mutational results, we suggest that Rrp46 is not only an exosome component protein participating in RNA degradation and processing, but that it also forms a homodimer involved in DNA degradation in apoptosis. This finding therefore opens a new direction for the future study of hRrp46 to uncover its link to autoimmune diseases and cancer.

MATERIALS AND METHODS

Cloning, protein expression, and purification

Full-length cDNAs of human and of rice Rrp46 were purchased from OpenBiosystems (Clone ID: 4308795) and the KOME database (Clone ID: 204796), respectively. The genes of the full-length rice Rrp46 (oRrp46), CRN-5, and human Rrp46 (hRrp46) were PCR-amplified and cloned into expression vectors, pET-22b (Novagen), pQE-70 (Qiagen), and pET-28c (Novagen), respectively, to generate His-tagged fusion constructs. pQE-70-CRN5 expression plasmid was transformed into the *E. coli* M15 strain cultured in LB medium, supplemented with 100 μg/mL ampicillin. pET-22b-oRrp46 and pET-28c-hRrp46 were transformed into the *E. coli* BL21-CodonPlus(DE3)-RIPL strain (Strategene) cultured with 75 μg/mL streptomycin, 50 μg/mL chloramphenicol, and 100 μg/mL ampicillin or 50 μg/mL kanamycin. The transformed bacterial expression strains were grown to an OD₆₀₀ of 0.4 and then induced with 0.5 mM IPTG at 18°C for 20 h. The harvested cells were disrupted by a microfluidizer in the buffer of 50 mM Tris-HCl (pH 7.6), 300 mM NaCl, and 1 mM β-mercaptoethanol.

The crude cell extract was passed through a TALON metal affinity resin column (BD Biosciences) followed by a gel filtration chromatography column (Superdex 200; GE Healthcare). Purified protein samples were concentrated to a suitable concentration in 25 mM Tris-HCl (pH 7.6), 150 mM NaCl, and 1 mM β-mercaptoethanol. Purified protein (2 μg) were mixed with the sample loading buffer containing the reducing agent (6 mM β-mercaptoethanol) and were heated to denature the protein before resolving the sample in 10% SDS-PAGE stained with Comassie blue (see Fig. 2A). All oRrp46 point mutants were generated by Quickchange site-directed mutagenesis kits (Stratagene) and purified by the same procedure as the wild-type oRrp46.

Dynamics light scattering and analytical ultracentrifugation

Dynamics light scattering (DLS) measurements were carried out on a Dyna-Pro 99 MS800 instrument (Protein Solutions). The purified protein (0.5 mg/mL) in a buffer of 20 mM HEPES (pH 7.0), 100 mM NaCl, 1 mM CaCl₂, and 1 mM DTT was centrifuged at 16,000g, 4°C for 15 min, and the supernatant was placed in a 12-μL cuvette (b = 1.5 mm). The protein samples were incubated...
for 5 min at 20°C before data acquisition over an acquired time of
15 min. The size distribution plots—the x-axis showing a distribu-
tion of estimated particle radius (nm) and the y-axis showing the
relative intensity of the scattered light (percentage of intensity)—
were analyzed with software Dynamics V5.26.60 (Protein Solutions).

For analytical ultracentrifugation (AUC) assays, the recombi-
nant human hRrp46 and C. elegans CRN-5 were concentrated to
an OD_{280} of 0.5 in 25 mM Tris-HCl (pH 7.6), 150 mM NaCl, and
1 mM β-mercaptoethanol. Sedimentation velocities of proteins
were performed at 40,000 rpm (Beckman XL-A) under 4°C.
Multiple scans (OD_{280}) at different time intervals were then fitted
to a continuous c(s) distribution model using the SEDFIT
program (Schuck 2000; Brown and Schuck 2006).

Fractionation of cell extracts and Western blotting

Human kidney 293T cells were pooled and extracted by sonication
in 2 mL of PBS buffer (10 mM Na_{2}HPO_{4}, 1.8 mM KH_{2}PO_{4}, pH
7.4, 140 mM NaCl, and 2.7 mM KCl) with or without 1 mM
β-mercaptoethanol. Rice callus cells were dried and extracted by
grinding in liquid nitrogen and then dissolved in 2 mL PBS buffer.
Crude cell extract was then centrifuged at 16,000g, 4°C for 15 min.
The supernatant was collected and passed through a gel filtration
chromatography column (Superdex 200, GE Healthcare). Eluted
fractions were collected and concentrated using Vivaspin 6 cen-
trifugal concentrators (GE Healthcare). Equal volumes of con-
centrated fractions were separated by SDS-PAGE, and probed by
Western blotting using anti-hRrp46, anti-oRrp46, and anti-hRrp42
antibodies.

DNA-binding and DNase activity assays

For DNA gel shift assays, 20 mL of 5′-end P_{32}-labeled 20-nt
double-stranded DNA (5′-ACTGGACAAATACCTCGAGG-3′)
were incubated with different concentrations of purified recombi-
nant protein in a buffer containing 20 mM HEPES (pH 7.0) and
5 mM EDTA on ice for 1 h. After incubation, the reaction mixtures
were resolved in 10% polyacrylamide gels, which were exposed to
the phosphorimaging plate (Fujifilm) and analyzed by an FLA-
5000 (Fujifilm) imaging system.

For the DNase activity assays shown in Figures 3, B and C, and
6A, 309-bp linear double-stranded DNA (30 mM) were incubated
with the purified protein (1 μM) in the DNase reaction buffer
containing 20 mM HEPES (pH 7.0), 100 mM NaCl, 1 mM CaCl_{2},
and 1 mM DTT at 37°C for the indicated periods. For the DNase
activity assays shown in Figure 3D, a pQE-70 plasmid DNA (100
ng) was incubated with 0.2 μM purified protein in the DNase
reaction buffer at 37°C for the indicated periods. For the DNase
activity assays shown in Figure 7B, purified CRN-4 and/or CRN-5
(concentration 1–2 μM) was incubated with 309-bp double-
stranded DNA (30 nM) in a solution of 10 mM NaCl, 3 mM
MgCl_{2}, 1 mM CaCl_{2}, and 20 mM Tris-HCl (pH 6.0) at 30°C for 40
min. All the reactions were stopped by adding 10 mM proteinase
K for 10 min to remove proteins. The digest patterns were
resolved on 1% or 1.5% agarose gels stained by ethidium bromide
and quantified by AlphaEaseFC software (Alpha Innotech).

RNA-binding and RNase activity assays

The 2.3-kb ssRNA was transcribed in vitro using a MAXIscript kit
(Ambion). The 20-mer ssRNA (5′-ACUGGACAAAAUCUCCGA
GG-3′) was first labeled at the 5′ end with [γ-32P] ATP by T4
polyribonucleotide kinase and then purified on a Microspin G-25
column (GE Healthcare) to remove the unincorporated nucleo-
tides. For RNA-binding assays, 500 ng of 2.3-kb ssRNA substrates
were incubated with different concentrations of recombinant
purified protein in the RNA-binding reaction buffer (50 mM Tris-HCl at
pH 8.0, and 10 mM EDTA) on ice for 30 min. After incubation,
the reaction mixture was separated on 1% agarose gels and stained
with ethidium bromide.

For RNase activity assays, 20 nM of labeled 20-mer ssRNA or
500 ng 2.3-kb ssRNA substrates was incubated with different
concentrations of purified protein in the RNase reaction buffer
(50 mM Tris-HCl at pH 8.0, 50 mM KCl, 2 mM MgCl_{2}, 5 mM
NaH_{2}PO_{4}, and RNase IN [1 U/μL, Promega]) at 30°C for 1 h.
The reaction was stopped at the time point indicated in the figures
by adding TBE-Urea sample buffer (Bio-Rad) or 10 mM proteinase
K. Digest patterns of 20-mer ssRNA were resolved in 20% polyacrylamide/7 M urea gels, which were exposed to the
phosphorimaging plate (Fujifilm) and analyzed by an FLA-5000
(Fujifilm) imaging system.

The RNA substrate used in the thin layer chromatography (Fig.
4D) was transcribed by T7 RNA polymerase with linearized
(XhoI) pET-22b (Novagen) in the presence of [α-32P]ATP.
Ascending thin layer chromatography was done on polyethyle-
neimine-cellulose plates (Sigma) in 1.2 M formic acid and 0.5 M
LiCl. The cold AMP and ADP standards (100 nmol) were added
to the samples before loading. Standards were visualized by UV
shadowing.

Crystallization and X-ray diffraction data collection

Crystals of CRN-5 and oRrp46 were grown by the hanging-drop
vapor diffusion method at room temperature. The crystalliza-
drop was made by mixing 1 μL of protein solution and 1 μL
of reservoir solution. oRrp46 (7.5 mg/mL, 50 mM Tris-HCl,
pH 8.0, 150 mM NaCl) was crystallized using a reservoir solu-
tion containing 0.2 M sodium malonate (pH 7.0) and 20% PEG3350.
CRN-5 (30 mg/mL, 50 mM Tris-HCl at pH 8.0) was crystallized using a reservoir solution containing 0.1 M Tris-HCl (pH 8.0), 0.2 M NaCl, and 25% PEG3350.
Diffraction data of
oRrp46 and CRN-5 were collected at −150°C at beamlines 13C1
and 13B1, respectively, of the National Synchrotron Radiation
Research Center, Taiwan, and were processed and scaled by
HKL2000 (Otwinowski and Minor 1997). All diffraction statistics
are listed in Table 1.

Structure determination and refinement

oRrp46 crystallized in the trigonal space group P3₁ as twin crystals
with a twin factor of 0.5. The twin operation of the Miller index
was assigned as (h,k,-l) using Phenix (Xtriage) (Adams et al., 2002),
as well as Merohedral Crystal Twinning Server (Yeates 1997).
CRN-5 crystallized in the monoclinic space group P2₁ with
two molecules per asymmetric unit. The structure oRrp46 and
CRN-5 were solved by molecular replacement by CCP4-Molrep
(Potterton et al. 2003) and BALBES (Long et al. 2008), re-
spectively, using the crystal structure of human Rrp46 (PDB
accession code: 2NN6, chain D) as the search model. The protein
model was constructed using the program Coot (Emsley and
Cowtan 2004) and refined by Phenix (Adams et al. 2002). Due to
the low resolution of the CRN-5 data (3217 unique reflections),
the CRN-5 structure was refined in the final stage by rigid-body refinements followed by group B factor refinements (one residue per group). The stereochemical quality of the refined model was evaluated by PROCHECK (Laskowski et al. 1993). Structural coordinates and diffraction structure factors have been deposited in the RCSB Protein Data Bank with the PDB ID code of 3HKM for oRrp46 and 3KNR for CRN-5.

His-tag pull-down assays

His-tagged CRN-5 (5 μg) was incubated with CRN-4 (5 μg) in 50 mM Tris-HCl, 300 mM NaCl at pH 7.5, at 4°C for 8 h. After centrifugation, the protein sample was loaded onto Ni-NTA spin columns (Qiagen) and washed three times each with Wash-1 buffer and Wash-2 buffer (Wash-1 buffer: 50 mM Tris-HCl, 300 mM NaCl [pH 7.5], and 2 mM imidazole; Wash-2 buffer: 50 mM Tris-HCl, 300 mM NaCl [pH 7.5], and 5 mM imidazole). Bound proteins eluted with elution buffer (50 mM Tris-HCl, 300 mM NaCl [pH 7.5], and 500 mM imidazole) were separated by SDS-PAGE in 10% gels. CRN-4 and His-tagged CRN-5 were probed with anti-CRN-4 and anti-His tag antibodies (Novagen) after transferring onto a PVDF membrane. Detection was carried out using alkaline phosphatase-conjugated secondary antibody (Millipore) and BCIP/NBT substrate solution.

SUPPLEMENTAL DATA

Supplemental material can be found at http://www.rnajournal.org.

ACKNOWLEDGMENTS

This work was supported by research grants from Academia Sinica and the National Science Council, Taiwan. Portions of this research were carried out at the National Synchrotron Radiation Center (BL-13B1 and BL-13C1), a national user facility supported by the National Science Council of Taiwan. The Synchrotron Radiation Protein Crystallography Facility is supported by the National Research Program for Genomic Medicine. We thank Ding Xue at the University of Colorado for providing the cDNA of CRN-4 and CRN-5. We also thank Su-May Yu at Academia Sinica for providing the rice callus for protein analysis, and Ethan Wu at Biophysics Core Facility, Academia Sinica, for AUC data collection.

Received March 17, 2010; accepted June 10, 2010.

REFERENCES

Anderson JS, Parker RP. 1998. The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SK12 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. *EMBO J* **17**: 1497–1506.

de la Cruz J, Kressler D, Tollervey D, Linder P. 1998. Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3′ end formation of 5.8S rRNA in *Saccharomyces cerevisiae*. *EMBO J* **17**: 1128–1140.

www.rnajournal.org 11